群发资讯网

返回主页
partial derivatives
偏导数:多元函数中对其中一个变量求导数时
常用释义
英式发音
美式发音
基本释义
  • 偏导数:多元函数中对其中一个变量求导数时,将其他变量视为常数而进行的求导运算。
例句
  • 1·Why do we like partial derivatives?
    为什么我们偏爱偏微分呢?
  • 2·We are trying to understand partial derivatives.
    我们还要试图理解偏导数。
  • 3·It has only partial derivatives for each variable.
    它只有关于每个变量的偏导数。
  • 4·Suppose and have continuous partial derivatives on.
    设,在上有连续的偏导数。
  • 5·So, we have to figure out what we mean by partial derivatives again.
    因此,我们应该重新理解偏导数的含义。
  • 6·That means it involves the first partial derivatives of whatever you put into it.
    这意味着,不管放什么进去,都会包括一阶偏导。
  • 7·So, critical points, remember, are the points where all the partial derivatives are zero.
    临界点是,偏导数都为零的点。
  • 8·What we would start doing immediately is taking the partial derivatives. What is f sub x?
    我们首先要做的事是,求偏导数,fx是多少?
  • 9·And we have learned how to package partial derivatives into a vector, the gradient vector.
    我们也知道了,如何将各个偏导组合成一个梯度向量。
  • 10·And a partial differential equation is some relation between its partial derivatives. Let me see.
    而一个偏微分方程就是,函数各个偏导之间的联系,看看。