asymptotic property
渐近性
常用释义
英式发音
美式发音
基本释义
- 渐近性;渐近特性
例句
-
1·This paper discusses the asymptotic property of the Mid-point of the mean theorem for first form curvilinear integral.文章研究了第一型曲线积分中值定理“中间点”的渐近性,获得了一些重要结果,得出它也是定积分中值定理相应结果的推广。
-
2·The proposed model can be derived from the statistical theory of extreme-value, and has a similar asymptotic property to the deterministic Gompertz curve.该模型来源于极值统计理论,并具有类似于确定性龚帕兹曲线函数的渐近性特性。
-
3·The main purpose of this paper is to study the asymptotic property about the divisor product and the square residues, and to obtain some interesting asymptotic formulas.本文的主要目的是研究有关因子积序列和平方剩余的渐近性质,得到有关这两个序列的渐近公式。
-
4·In this paper we study the asymptotic property of solutions of a class of reaction-diffusion systems including those appearing in the theory of epidemics and combustion.本文讨论了一类反应扩散方程组解的渐近性质。这类方程组包括传染病理论和燃烧理论中出现的一类方程。
-
5·This paper firstly proves R-S mean value formula for integral, and USES the supplementary function for further discussing the asymptotic property of the "intermediate point".本文首先证明了R—S积分中值公式,并利用辅助函数进一步讨论了其“中间点”的渐近性。
-
6·This formulation possesses an asymptotic strong duality property and guarantees a success for identifying an optimum solution.此公式具有渐进强对偶的特性并且可以保证找到原问题的最优解。
-
7·The convergent property and convergent rate of parameter estimation error are analyzed . Some sufficient conditions are given to guarantee the asymptotic normality of parameter estimation error.分析了离散时间线性系统模型参数估计误差的收敛性和收敛速度,对参数估计误差服从渐近正态分布的一些条件进行了讨论。
-
8·As corollaries, some asymptotic equipartition property theorems for arbitrary information source, m-order Markov information source, and non-memory information source were obtained.得出了若干任意信源、m阶马氏信源、无记忆信源的渐进均匀分割性定理,并将已有的关于离散信源的结果进行了推广。
-
9·In this paper, we study the asymptotic equipartition property (AEP) form order nonhomogeneous Markov information source.本文研究非齐次m阶马氏信源的渐近均分割性。
-
10·For a kind of population, the asymptotic best property of trimmed mean is discussed. Then, a expression of the best trimmed estimate of population parameters is given.首先对一类总体讨论了截尾均值的渐近最优性,然后给出了更一般情形总体参数最优截尾估计的一个表达式。