群发资讯网

返回主页
unbiased estimator
无偏估计量:在统计学中
常用释义
英式发音
美式发音
基本释义
  • 无偏估计量:在统计学中,指估计量的期望值等于被估计参数的真实值。
例句
  • 1·An unbiased estimator can be acquired through high order moments of received data.
    利用基带数据的高阶矩特性,可以获得渐近无偏估计。
  • 2·In the present paper, We give the necessary and sufficient conditions for which the minimum variance linear unbiased estimator reduces to the least square in multivariate linear models.
    本文讨论回归方程组系数的估计,给出最小二乘估计是有效估计的条件。
  • 3·Then, we studied a few of properties of negative binomial distribution and the uniformly unbiased estimator of the parameter, and it's biological significances were explained in Epidemiology.
    给出了负二项分布的分解定理,进一步研究了负二项分布的有关性质及参数的无偏一致估计,以及在流行病学该分布的生物学意义。
  • 4·Is it possible for an estimator to be unbiased but inconsistent?
    是否有可能(一个估计量)是无偏却不一致的?
  • 5·While not all useful estimators are unbiased, virtually all economists agree that consistency is a minimal requirement for an estimator.
    虽然并不是所有的有用的估计量是无偏的,但是,一致性则是经济学家对估计量的最低要求。
  • 6·When the estimator is unbiased, the numerical estimate is frequently also called unbiased.
    当估计量无偏时, 数字估计值也常叫做无偏的。
  • 7·The maximum likelihood estimator for population average treatment effect is proved to be consistent, unbiased and asymptotically normal.
    并且证明了在正态分布的假设下,该总体平均因果效应的极大似然估计是相合无偏且渐近正态的。
  • 8·Under the normal distribution, the maximum likelihood estimator for the population parameter is proved to be unbiased and asymptotically normal.
    证明了此统计量是渐近正态的,并利用蒙特卡罗方法对统计量的渐进分布做了统计模拟。