群发资讯网

返回主页
mean value theorem
存在至少一个点
常用释义
英式发音
美式发音
基本释义
  • 均值定理:一个数学定理,用于描述在一个连续函数的闭区间上,存在至少一个点,其导数等于该区间上函数值的平均变化率。
例句
  • 1·Mean Value Theorem. Go over Homework 3.
    复习3平均值定理。讨论作业3。
  • 2·A new way to prove Lagrange's mean value theorem is given using the theorem of interval nest.
    应用区间套定理给出了拉格朗日中值定理一个新的证明。
  • 3·Mean value theorem and Taylor formula are generally proofed by constructing an auxiliary function.
    中 值 定理 是研究函数特性的一个有力工具。
  • 4·This paper discusses the asymptotic rate of "mean value point" in second mean value theorem for integrals.
    主要讨论了第二积分中值定理“中值点”的渐近性和渐近速度。
  • 5·Secondly, the Lagrange mean value theorem in some proof of identity and the inequality in a wide range of applications.
    其次,拉格朗日中值定理在一些等式和不等式的证明中应用十分广泛。
  • 6·Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior.
    研究 积分第一中值定理,获得了其中值 渐 近性的一个新结果。
  • 7·Results the value distribution properties of this function were solved and an interesting mean value theorem was obtained.
    结果关于这个函数的值分布性质,给出了一个有趣的均值定理。
  • 8·This paper gives the new method to prove the cauchy mean value theorem which also may be deduced from the Lagrange mean value theorem.
    给出柯西中值定理的一个新的证法,说明柯西中值定理也可由拉格朗日中值定理导出。
  • 9·This paper gives the new method to prove the Cauchy Mean Value Theorem, which also may be deduced from the Lagrange Mean Value Theorem.
    给出柯西中值定理的一个新的证法,说明柯西中值定理也可由拉格朗日中值定理导出。
  • 10·In this paper, second mean value theorem for integrals is studied, and some results of the inverse problem of the theorem are obtained.
    给出了在各种情况下积分第二中值定理“中间点”的渐近性的几个结论,相信在积分学中有着很重要的作用。