群发资讯网

返回主页
maximum likelihood estimator
最大概似推定量
常用释义
英式发音
美式发音
基本释义
  • [数] 最大似然估计值;[统计][数] 极大似然估计量;最大概似推定量
例句
  • 1·The maximum likelihood estimator for population average treatment effect is proved to be consistent, unbiased and asymptotically normal.
    并且证明了在正态分布的假设下,该总体平均因果效应的极大似然估计是相合无偏且渐近正态的。
  • 2·Under the normal distribution, the maximum likelihood estimator for the population parameter is proved to be unbiased and asymptotically normal.
    证明了此统计量是渐近正态的,并利用蒙特卡罗方法对统计量的渐进分布做了统计模拟。
  • 3·By employing the concept of statistical curvatures, the information loss of the maximum likelihood estimator and the generalized least squares estimator is investigated.
    利用统计曲率的概念,研究结构方程模型的最大似然估计量和广义最小二乘估计量的信息损失,得到了简明的结果。
  • 4·Simulation results showed that under conditions of small arc length and high noise, which often occur in practice, the approximate maximum likelihood estimator performs well.
    模拟结果表明,在小弧长和高噪声的条件下,这种新的估计器性能优良。
  • 5·The Maximum Likelihood Estimator (MLE) of the parameter of interarrival distribution based on renewal process is discussed. It is obtained that the MLE converges strongly to the true parameter.
    文中我们讨论了更新过程中分布参数的最大似然估计,证明了最大似然估计是强相合的。
  • 6·Systematically introduced parameter estimation of distributed sources on the base of models, including the maximum likelihood estimate, least squares estimator, DSPE, DISPARE, etc.
    在模型基础上系统地介绍了已有分布式目标参数估计方法,包括最大似然与最小二乘算法,DSPE和DISPARE算法等。
  • 7·According to maximum likelihood theory, it fuses random samples coming from different matrix (same mean different variance) in an effective way, and gains a nwe estimator of matrix mean.
    该方法依据极大似然原理将来自不同母体(均值相同、方差不同)的随机样本有效融合,得到新的母体均值估计量。
  • 8·This model function is applied to NSCAT data to retrieve wind vectors, with the Maximum-Likelihood Estimator to get a set of ambiguous wind vectors and a vector filter technique to remove ambiguities.
    利用该模式函数对另一组NSCAT后向散射系数数据进行海面风场反演,采用最大似然估计确定多个风矢量解,并采用矢量中值滤波消除多解。
  • 9·Maximum likelihood DOA estimator based on importance sampling (ISMLE) is proposed.
    提出了基于重要性抽样的最大似然方位估计方法。