群发资讯网

返回主页
augmented matrix
增广矩阵:一个矩阵
常用释义
英式发音
美式发音
基本释义
  • 增广矩阵:一个矩阵,其元素是一组同时线性方程的系数,方程的常数项输入到一个额外的列中。
例句
  • 1·In this paper, a new method for finding the augmented matrix is presented.
    本文给出了求取增广矩阵的一个新方法。
  • 2·Prediction to the regression parameters was converted to predict cross product matrix of the variable augmented matrix.
    对多元线性回归模型参数的预测,转化为对其变量集合的增广矩阵的叉积阵的预测。
  • 3·Using the method of augmented matrix, the model equations are changed from nonhomogeneous form to homogeneous form, to be solved.
    采用增广矩阵的方法将非齐次的模型方程化为齐次的形式再求解。
  • 4·It is clear in concept and easy to use, and reveals a general form of the augmented matrix method, conducing to its wider application.
    该方法概念清晰,简便实用,揭示了增广矩阵法的一般形式,有助于增广矩阵法的广泛应用。
  • 5·It is shown that the augmented matrix of misaligned complex optical systems can be represented by an ordered product of basic matrices.
    研究表明,失调光学系统的增广矩阵可用三个基本矩阵的有序乘积表示。
  • 6·The old methods about solving a system of linear equations all base on using the row's elementary operation to matrix of coefficients or augmented matrix.
    现有的关于线性方程组的解法,都是基于对系数阵或增广阵施行初等“行”变换。
  • 7·This paper presents directly the general solution to sets of linear equations by properly bordering on augmented matrix and elementary transformation, and produeces some theoretical proving.
    通过对增广矩阵适当“加边”,利用矩阵的初等行变换,直接求出线性方程组的通解形式,并在理论上给予了论证。
  • 8·It shows that the presented method can be used to identify modal parameters effectively under ambient excitation and that the polynomial eigenvalue method is superior to the augmented matrix method.
    结果表明,多参考点互相关差分模型能够有效地进行环境激励下的模态识别,并且多项式特征值法比增广矩阵法所得结果更好。
  • 9·Augmented mass, damping, stiffness matrix of system was set up to derive vertical dynamic differential equations for locomotive components and obtain output responses of suspensions.
    为建立机车各部件的垂向动力学微分方程,计算各悬挂力的输出响应,建立了系统质量、阻尼和刚度的增广矩阵。
  • 10·It is compatible with equations of rigid multibody systems because of using the concepts, such as path matrix, incidence matrix, instantaneous augmented body.
    由于采用通路矩阵、关联矩阵、瞬时增广体等概念,其形式与多刚体系统动力学方程兼容。