algebraic topology
代数拓扑学:一种研究拓扑空间的数学分支
常用释义
英式发音
美式发音
基本释义
- 代数拓扑学:一种研究拓扑空间的数学分支,通过代数方法(如群、环等)来描述和分析拓扑空间的性质。
例句
-
1·Algebraic topology is the study of the global properties of Spaces by means of algebra.代数学的拓扑是透过代数空间的全球特性的研究。
-
2·Algebraic Topology; Symplectic Geometry and Topology; Ordinary and Partial Differential Equations.代数拓扑;辛几何与拓扑;常微分和偏微分方程。
-
3·Some more advanced algebraic topology may also be useful as might some knowledge of category theory.更深入的代数拓扑学以及范畴理论的知识将有更大的帮助。
-
4·Homeomorphic morphism and homotopy equivalence are two important concepts in the theory of algebraic topology.同胚映射和同伦等价是代数拓扑学中的两个重要概念。
-
5·Knowledge of elementary algebraic topology and elementary differential geometry is recommended, but not required.建议事先知道一些关于代数拓扑和微分几何的基本知识,但不是必需的。
-
6·Topology is traditionally decomposed into three parts: General topology, Algebraic topology and Differential topology.习惯上拓扑学被分成点集拓扑、代数拓扑和微分拓扑三部分。
-
7·An identification edge structure is put forward to represent non manifold modeling, which is built on the concepts and methods of the complex and CW complex in algebraic topology.提出了一个非流形结构的表示方法——粘合边结构,其数学基础是代数拓扑中的复形理论。
-
8·Used the theorem of exponential correspondence, a theorem on quotient map was generalized to the cases of coinduced topology, and some applications of it in algebraic topology were also discussed.利用指数对应定理,将关于商映射的一个定理推广到上诱导拓扑的情形,并给出其在代数拓扑学中的若干应用。